Up to 36 kV
Gas-insulated switchgear with vacuum circuit-breaker for primary distribution

System configuration
Delivery Conditions
The General Delivery Conditions as amended shall apply.
Illustrations
The illustrations are not binding.
Contents

- Introduction ... 5
 □ Features ... 5
 □ Straightforward operation due to a functional user interface 7

- Standards Regulations, provisions and standards .. 8
 □ Standards applied .. 8
 □ Type designation .. 9

- Selection tables .. 10
 □ WSA/WSB with vacuum circuit-breaker and disconnector, 12 KV 10
 □ WSA/WSB with vacuum circuit-breaker and disconnector, 17.5 KV 12
 □ WSA/WSB with vacuum circuit-breaker and disconnector, 24 KV 14
 □ WSA/WSB with vacuum circuit-breaker and disconnector, 36 KV 16

- Product description ... 18
 □ Design of the WSA/WSB switchgear panels .. 18
 □ Module modules .. 19
 □ Technical description .. 20
 □ Technical data .. 24
 □ Interlocking and panel protection .. 25
 □ Gas compartment monitoring ... 27

- Range of equipment .. 29
 □ Basic modules of a single busbar WSA switchgear 30
 □ Basic modules of a Double busbar WSB switchgear 31
 □ Weight of panels .. 33

- Cable connections ... 34

- Special models .. 37

- Ecological considerations .. 38

- Design Data Basic dimensions and flooring ducts ... 39
 □ Space required by a WSA .. 41
 □ Space required by a WSB .. 42

- Shipping instructions .. 44
 □ Delivery, packaging ... 44
A switchgear concept of high economic efficiency, availability and versatility

The gas-insulated, metal-enclosed and metal-clad WS switchgear has been designed for application in transformer substations, industry and infrastructure and satisfies the most exacting requirements regarding

- operating reliability
- operator safety
- availability
- environmental compatibility.

The panels are suitable for configuring single and double busbar switchgear for indoor installation. Bilateral extension of existing switchgear is straightforward.

The WS is a systematically gasinsulated switchgear whose busbar systems are also consistently located in gas-insulated cladded compartments.

WS switchgear units with
- rated voltages up to 36 kV
- rated currents up to 2,500 A
- rated peak withstand currents up to 80 kA
- rated short-time currents up to 31.5 kA 3s
- arc resistant-classification IAC max. 31.5 kA 1s

are primarily used as consistently gas-insulated switchgear for application in transformer and switching stations of

- power supply companies
- infrastructure, e.g. buildings
- government authorities
- industry
- open-cast lignite mining
- mining
- ships and offshore plants
- railway traction power supply.

The WS satisfies maximum requirements regarding

- operating reliability
- operator safety
- availability
- environmental compatibility.

With WS switchgear, the same space is required for the single busbar and double busbar models. The compact design with extremely small dimensions is very advantageous for use

- in confined spaces
- when substituting old switchgear in existing operating aisles.
Introduction (contd.)

Features

Operator-safe
- Maximum protection against accidental contact due to complete metal cladding of all switchgear components
- Optimum operator safety due to a complete interlocking system
- Successfully tested regarding behaviour in case of internal faults according to IEC 60298 Appendix AA

User-friendly
- Compact and clear design
- Easy access to all functional groups
- Modern industrial design according to ergonomic aspects facilitates operator guidance
- Visually highlighted control panel for mechanical switch position signalling on the switchgear panel
- Logical operator control
- Good visual operator guidance for mechanical operation of the panel

Economical
- Reduced space and surface area requirements
- Short assembly times
- Modest financial expense as the system can be extended step by step due to the extension options offered for different conditions
- Minimized operating costs

Climate-independent
- All high-voltage components are in SF6 atmosphere under slight excess pressure, thus protected against atmospheric humidity and contamination, independently of the installation altitude
- Gas tank made of stainless chromiumnickel steel

Safe to operate
- All active medium-voltage components are located in hermetically enclosed, gas-filled cladded compartments and are thus insensitive to
 - aggressive atmosphere
 - dirt
 - dust
 - vermin
- Systematic gas-insulated technology: Even the busbar system is gas-insulated and is continuously monitored with regard to insulating capacity together with all the other medium-voltage components.
- Inert insulating gas SF6 provides protection against a fire in the station and prevents contact oxidation.
- Subdivision of the three-phase enclosure by poles using metal partitions (M enclosure)
- No partial discharge possible between the phases
- Negligible sheath currents
- Simple drive mechanisms: e.g. in case of single busbar switchgear units, simply an outside push rod
- Stable and reliable gas system

Reliable
Central electronic gas monitoring device, temperature-compensated
Few gas compartments and pressure relief devices
Low number of static and dynamic seals
High number of mechanical and electrical operations due to the use of vacuum circuit-breakers
Very robust and reliable drive and interlocking system

Expandable
Bilateral extension is possible

Easy to assemble
Light-weight
Optimum access to the spacious cable connection area
Can be installed in the switching compartment without the use of lifting devices
Straightforward operation due to a functional user interface

Mechanical operation is performed the same way as with the habitual operation of conventional switchgear with stationary switching devices. Separate control elements and mechanical indicators are available for the following functions:

- Circuit-breaker ON - OFF
- Disconnector ON - OFF
- Outgoing feeder / busbar earthing ON - OFF

The mechanical control panel is located at an ergonomically convenient height and arranged in a recessed position on the switchgear front. Thus, the operating area is clearly visible while no control elements protrude from the switchgear front. The position of the individual elements has been selected according to their function, i.e. according to their allocation to the corresponding device functions.

The elements which form part of a main switching device, such as position indicators, interrogating levers and crank ports, are visually linked by a specific pattern and integrated in a mimic diagram.

The WS is characterized by the following operating features:

- Ergonomic operability
- Logical operation
- Logical function states
- Good visual communication of the overall function and operating states
- Optimum operator guidance
- All operations can be performed optionally via a motor-operated mechanism
WSA switchgear units are
- metal enclosed
- SF₆ insulated
- prefabricated and type-tested
- arc resistant-classification IAC max. 31.5 kA 1s

Environmental and operating conditions
WS switchgear units must be operated under normal operating conditions according to the specifications EN 60694 or the IEC publication 60694 (new: IEC 62271-1).
Operation under conditions other than these is only admissible upon consultation and with the consent of the manufacturer.

Ambient conditions
- **Temperature class**
 - *minus 5 indoors* ¹)
- **Min./max. ambient temperature** °C
 - M1 / 40 ²)
- **Average value over 24 hours (max.)** °C
 - 35 ³)
- **Maximum installation altitude above sea level** m
 - 1000 ⁴)

Insulating gas
- **Type**
 - Sulphur hexafluorid (SF₆)
- **Rated filling pressure** at 20 °C MPa
 - 0.03 - 0.05

 ¹) Optional: *minus 25 indoors*
 ²) Optional up to 55°C in case of reduction of normal currents
 ³) Optional up to 40°C in case of reduction of normal currents
 ⁴) Higher installation altitudes possible on request

Degrees of protection against accidental contact and foreign objects
- **Main electric circuits** IP65
- **Drives** IP2X, IP 5X ¹)
- **Low-voltage cabinets and cable connection compartments (Operator's side with cable compartment coverand side panels)** IP3X, IP 5X ¹)

 ¹) Optional

Standards applied
WS switchgear units meet the following standards and regulations:

<table>
<thead>
<tr>
<th>Designation</th>
<th>IEC standard</th>
<th>IEC classes</th>
<th>EN standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switchgear</td>
<td>IEC 62271-200 IEC 60694 (new IEC 62271-1)</td>
<td>Category for operating availability LSC 2A Partition class (compartmentalization class): PM</td>
<td>EN 62271-200 EN 60694 (new EN 62271-1)</td>
</tr>
<tr>
<td>Circuit-breaker</td>
<td>IEC 62271-100</td>
<td>M2, E1, C1</td>
<td>EN 62271-100</td>
</tr>
<tr>
<td>Earthing switch</td>
<td>IEC 62271-102</td>
<td>E2</td>
<td>EN 62271-102</td>
</tr>
<tr>
<td>Disconnectors</td>
<td>M1</td>
<td>EN 62271-102</td>
<td></td>
</tr>
<tr>
<td>Current transformers</td>
<td>IEC 60044-1</td>
<td>EN 60044-1</td>
<td></td>
</tr>
<tr>
<td>Inductive voltage transformers</td>
<td>IEC 60044-2</td>
<td>EN 60044-2</td>
<td></td>
</tr>
<tr>
<td>Voltage detection systems</td>
<td>IEC 61243-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protection against accidental contact, foreign objects and water</td>
<td>IEC 60529</td>
<td>EN 60529</td>
<td></td>
</tr>
<tr>
<td>Installation</td>
<td>HD 637 S1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation of electrical equipment</td>
<td>EN 50110</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Type designation

The type designation of the typetested, prefabricated panels contains information about their design, rated voltage, insulation level, panel width and panel height.

<table>
<thead>
<tr>
<th>Type designation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series</td>
<td>Gas-insulated (SF₆) panels for extremely demanding requirements</td>
</tr>
<tr>
<td>Version</td>
<td>Single busbar, indoors</td>
</tr>
<tr>
<td></td>
<td>Double busbar, indoors</td>
</tr>
<tr>
<td>Rated peak withstand current</td>
<td>63 kA</td>
</tr>
<tr>
<td>Rated voltage</td>
<td>80 kA</td>
</tr>
<tr>
<td>Dimension code</td>
<td>623</td>
</tr>
<tr>
<td></td>
<td>627</td>
</tr>
<tr>
<td>Panel width</td>
<td>600 mm</td>
</tr>
<tr>
<td>Panel height</td>
<td>2300 mm</td>
</tr>
<tr>
<td></td>
<td>2798 mm</td>
</tr>
</tbody>
</table>

Example:

Prefabricated, type-tested panel of the **WS** series with single busbar, for indoor installation, version **A**

Rated peak withstand current **63 kA**

Rated voltage **12 kV**

Panel width: **600 mm**; panel height: **2300 mm**

Type designation: **WSA 6/12-2/623**
WSA/WSB with vacuum circuit-breaker and disconnector, 12 KV

<table>
<thead>
<tr>
<th>Type</th>
<th>Panel width (mm)</th>
<th>Rated voltage (kV)</th>
<th>Rated lightning impulse withstand voltage (kV)</th>
<th>Rated power frequency withstand voltage (kV)</th>
<th>Rated filling pressure p_a (MPa)</th>
<th>Rated frequency f_r (Hz)</th>
<th>Rated (normal) current I_f (A)</th>
<th>Rated short-circuit breaking current I_{max} (kA)</th>
<th>Rated short-circuit breaking current I_{max} (kA)</th>
<th>Rated peak withstand current, equal to I_f, continuous for $t = 1 s$ (kA)</th>
<th>Rated short-time current I_{s2} (kA)</th>
<th>Rated short-time current I_{s3} (kA)</th>
<th>Percentage value of the DC component %</th>
<th>Rated breaking current I_{m} (kA)</th>
<th>Rated breaking current I_{m} (kA)</th>
<th>Rated making current I_{m} (kA)</th>
<th>Rated breaking current I_{m} (kA)</th>
<th>Rated breaking current I_{m} (kA)</th>
<th>Electrical class</th>
<th>Rated operating sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSAB</td>
<td>600</td>
<td>12</td>
<td>75</td>
<td>28</td>
<td>85/32</td>
<td>0.03</td>
<td>50/60</td>
<td>630</td>
<td>40/42</td>
<td>16/25/37</td>
<td>20/20/16</td>
<td>37/20/16</td>
<td>20/20/16</td>
<td>600</td>
<td>1200</td>
<td>2000/2500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WSAB</td>
<td>600</td>
<td>12</td>
<td>75</td>
<td>28</td>
<td>85/32</td>
<td>0.03</td>
<td>50/60</td>
<td>630</td>
<td>40/42</td>
<td>16/25/37</td>
<td>20/20/16</td>
<td>37/20/16</td>
<td>20/20/16</td>
<td>600</td>
<td>1200</td>
<td>2000/2500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WSAB</td>
<td>600</td>
<td>12</td>
<td>75</td>
<td>28</td>
<td>85/32</td>
<td>0.03</td>
<td>50/60</td>
<td>630</td>
<td>40/42</td>
<td>16/25/37</td>
<td>20/20/16</td>
<td>37/20/16</td>
<td>20/20/16</td>
<td>600</td>
<td>1200</td>
<td>2000/2500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WSAB</td>
<td>600</td>
<td>12</td>
<td>75</td>
<td>28</td>
<td>85/32</td>
<td>0.03</td>
<td>50/60</td>
<td>630</td>
<td>40/42</td>
<td>16/25/37</td>
<td>20/20/16</td>
<td>37/20/16</td>
<td>20/20/16</td>
<td>600</td>
<td>1200</td>
<td>2000/2500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WSAB</td>
<td>600</td>
<td>12</td>
<td>75</td>
<td>28</td>
<td>85/32</td>
<td>0.03</td>
<td>50/60</td>
<td>630</td>
<td>40/42</td>
<td>16/25/37</td>
<td>20/20/16</td>
<td>37/20/16</td>
<td>20/20/16</td>
<td>600</td>
<td>1200</td>
<td>2000/2500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LS = Power category
TS = Disconnector
E = Earthing switch
* higher categories or values available on request
| Class for cap. switching | Cable breaking current | Single capacitor bank | Rated breaking current | Rated making current | Frequency of the rated making current \(f \) | Rated breaking current under asynchronous conditions | LS, TS, E | Rated (normal) current \(I_{\text{n}} \) \((50/60 \text{ Hz}) \) | Rated short-circuit breaking current | Operating time with AV (25 W) | Opening time without AV (160 W) | Opening time with AV (160 W) | Closing time (max.) | Arc duration (max.) | With 160 W release | With 160 W without AV 25 W | Charging time for circuit-breaker | Operating time for disconnector and earthing switch with motor-actuated drive mechanism, 160 W |
|-------------------------|------------------------|-----------------------|-----------------------|----------------------|-------------------------------|---------------------------------|----------|------------------------|-------------------------|---------------------------|---------------------|---------------------|-------------------------|---------------------------|-----------------------------|---|
| c2 | 25 | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
| c2 | 25 | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
| c2 | 25 | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
| c2 | 25 | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
| c2 | 25 | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
| c2 | 25 | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
| c2 | 25 | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
| c2 | 25 | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
| c2 | 25 | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – |

Electrical class of the outgoing earthing switch: E2

1. 1,000 A also possible
2. With motor-actuated fans
3. Capacitive class for cable switch; if capacitor bank switching is defined, then also valid for this application
4. Max. normal current 280 A, as capacitor bank current features harmonics
5. On request
WSA/WSB with vacuum circuit-breaker and disconnector, 17.5 kV

<table>
<thead>
<tr>
<th>Type</th>
<th>Panel width</th>
<th>Rated voltage</th>
<th>Rated lightning withstand voltage</th>
<th>Rated power frequency withstand voltage</th>
<th>Rated values of the isolating distance (lightning withstand voltage)</th>
<th>Rated filling pressure P_{in} at 20 °C</th>
<th>Rated normal current</th>
<th>Rated peak withstand current, equal to rated short-circuit making current</th>
<th>Rated short-time current</th>
<th>Rated short-circuit breaking current</th>
<th>Percentage value of the DC component</th>
<th>Electrical class</th>
<th>Class for cap. switching</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSA/B 6/17-2/623</td>
<td>600</td>
<td>17.5</td>
<td>95</td>
<td>38</td>
<td>110/45</td>
<td>0.03</td>
<td>630 $^\text{1)}$</td>
<td>40/42</td>
<td>16</td>
<td>16</td>
<td>37</td>
<td>E2</td>
<td>E2</td>
</tr>
<tr>
<td>WSA/B 6/17-2/623</td>
<td>600</td>
<td>17.5</td>
<td>95</td>
<td>38</td>
<td>110/45</td>
<td>0.03</td>
<td>630 $^\text{1)}$</td>
<td>40/42</td>
<td>16</td>
<td>16</td>
<td>37</td>
<td>E2</td>
<td>E2</td>
</tr>
<tr>
<td>WSA/B 6/17-2/623</td>
<td>600</td>
<td>17.5</td>
<td>95</td>
<td>38</td>
<td>110/45</td>
<td>0.03</td>
<td>630 $^\text{1)}$</td>
<td>40/42</td>
<td>16</td>
<td>16</td>
<td>37</td>
<td>E2</td>
<td>E2</td>
</tr>
<tr>
<td>WSA/B 6/17-2/623</td>
<td>600</td>
<td>17.5</td>
<td>95</td>
<td>38</td>
<td>110/45</td>
<td>0.03</td>
<td>630 $^\text{1)}$</td>
<td>40/42</td>
<td>16</td>
<td>16</td>
<td>37</td>
<td>E2</td>
<td>E2</td>
</tr>
<tr>
<td>WSA/B 6/17-2/623</td>
<td>600</td>
<td>17.5</td>
<td>95</td>
<td>38</td>
<td>110/45</td>
<td>0.03</td>
<td>630 $^\text{1)}$</td>
<td>40/42</td>
<td>16</td>
<td>16</td>
<td>37</td>
<td>E2</td>
<td>E2</td>
</tr>
<tr>
<td>WSA/B 6/17-2/623</td>
<td>600</td>
<td>17.5</td>
<td>95</td>
<td>38</td>
<td>110/45</td>
<td>0.03</td>
<td>630 $^\text{1)}$</td>
<td>40/42</td>
<td>16</td>
<td>16</td>
<td>37</td>
<td>E2</td>
<td>E2</td>
</tr>
<tr>
<td>WSA/B 6/17-2/623</td>
<td>600</td>
<td>17.5</td>
<td>95</td>
<td>38</td>
<td>110/45</td>
<td>0.03</td>
<td>630 $^\text{1)}$</td>
<td>40/42</td>
<td>16</td>
<td>16</td>
<td>37</td>
<td>E2</td>
<td>E2</td>
</tr>
<tr>
<td>WSA/B 6/17-2/623</td>
<td>600</td>
<td>17.5</td>
<td>95</td>
<td>38</td>
<td>110/45</td>
<td>0.03</td>
<td>630 $^\text{1)}$</td>
<td>40/42</td>
<td>16</td>
<td>16</td>
<td>37</td>
<td>E2</td>
<td>E2</td>
</tr>
<tr>
<td>WSA/B 6/17-2/623</td>
<td>600</td>
<td>17.5</td>
<td>95</td>
<td>38</td>
<td>110/45</td>
<td>0.03</td>
<td>630 $^\text{1)}$</td>
<td>40/42</td>
<td>16</td>
<td>16</td>
<td>37</td>
<td>E2</td>
<td>E2</td>
</tr>
<tr>
<td>WSA/B 6/17-2/623</td>
<td>600</td>
<td>17.5</td>
<td>95</td>
<td>38</td>
<td>110/45</td>
<td>0.03</td>
<td>630 $^\text{1)}$</td>
<td>40/42</td>
<td>16</td>
<td>16</td>
<td>37</td>
<td>E2</td>
<td>E2</td>
</tr>
</tbody>
</table>

LS = Power category
TS = Disconnector
E = Earthing switch

* higher categories or values available on request
Selection tables (contd.)

<table>
<thead>
<tr>
<th>Class for cap. switching</th>
<th>Cable breaking current</th>
<th>Rated breaking current</th>
<th>Frequency of the rated making current</th>
<th>Rated breaking current under asynchronous conditions</th>
<th>Rated making current</th>
<th>Rated short-circuit breaking current</th>
<th>Operating times with release</th>
<th>Operating time for disconnecter and earthing switch with motor-actuated drive mechanism, 160 W</th>
<th>Command times</th>
<th>Command times</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2</td>
<td>31.5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>4</td>
<td>M1</td>
<td>100</td>
<td>45, 33, 12</td>
<td>20, 20, 50</td>
<td>≤7, ≤8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>–</td>
<td>–</td>
<td>2000</td>
<td>M1</td>
<td>10000</td>
<td>100</td>
<td>–, –, –</td>
<td>70, 50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>–</td>
<td>–</td>
<td>2000</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–, –, –</td>
<td>70, 50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>–</td>
<td>–</td>
<td>1000</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–, –, –</td>
<td>70, 50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>–</td>
<td>–</td>
<td>1000</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–, –, –</td>
<td>70, 50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>–</td>
<td>–</td>
<td>1000</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–, –, –</td>
<td>70, 50</td>
<td></td>
</tr>
</tbody>
</table>

Electrical class of the outgoing earthing switch: E2

1) 1,000 A also possible

2) with motor-actuated fans

3) capacitive class for cable switch; if capacitor bank switching is defined, then also valid for this application

4) max. normal current 280 A, as capacitor bank current features harmonic

5) on request
Selection tables (contd.)

WSA/WSB with vacuum circuit-breaker and disconnector, 24 KV

<table>
<thead>
<tr>
<th>Type</th>
<th>Panel width</th>
<th>Rated voltage</th>
<th>Rated lightning impulse withstand voltage</th>
<th>Rated power frequency withstand voltage</th>
<th>Rated filling pressure (P_e) at 20 °C</th>
<th>Rated frequency</th>
<th>Rated (normal) current</th>
<th>Rated peak withstand current equal to rated short-circuit making current</th>
<th>Rated short-time current</th>
<th>Rated short-circuit breaking current</th>
<th>Percentage value of the DC component</th>
<th>Electrical class</th>
<th>O-3 min-CO-3 min-CO</th>
<th>O-4.3 s-CO-3 min-CO</th>
<th>CO-15 s-CO</th>
<th>O-4.3 s-CO-15 s-CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSA/B 8/24-2/623</td>
<td>600</td>
<td>24</td>
<td>125</td>
<td>50</td>
<td>145/60</td>
<td>0.03</td>
<td>50/60</td>
<td>630</td>
<td>40/42</td>
<td>16</td>
<td>16</td>
<td>37</td>
<td>(E_2)</td>
<td>(E_2)</td>
<td>(E_2)</td>
<td>(E_2)</td>
</tr>
<tr>
<td>WSA/B 8/24-2/623</td>
<td>24</td>
<td>600</td>
<td>50</td>
<td>145/60</td>
<td>0.03</td>
<td>0.075</td>
<td>0.075</td>
<td>50/60</td>
<td>1600</td>
<td>2000</td>
<td>2500(2)</td>
<td>50/52</td>
<td>20</td>
<td>20</td>
<td>37</td>
<td>(E_2)</td>
</tr>
<tr>
<td>WSA/B 8/24-2/623</td>
<td>24</td>
<td>600</td>
<td>50</td>
<td>145/60</td>
<td>0.03</td>
<td>0.075</td>
<td>0.075</td>
<td>50/60</td>
<td>1600</td>
<td>2000</td>
<td>2500(2)</td>
<td>63/65</td>
<td>25</td>
<td>25</td>
<td>37</td>
<td>(E_2)</td>
</tr>
<tr>
<td>WSA/B 8/24-2/623</td>
<td>24</td>
<td>600</td>
<td>50</td>
<td>145/60</td>
<td>0.03</td>
<td>0.075</td>
<td>0.075</td>
<td>50/60</td>
<td>1600</td>
<td>2000</td>
<td>2500(2)</td>
<td>80/82</td>
<td>31.5</td>
<td>5)</td>
<td>31.5</td>
<td>38</td>
</tr>
</tbody>
</table>

LS = Power category
TS = Disconnector
E = Earthing switch
* higher categories or values available on request
Selection tables (contd.)

<table>
<thead>
<tr>
<th>Class for cap. switching</th>
<th>Cable breaking current</th>
<th>Single or 3-phase</th>
<th>Rated breaking current L1</th>
<th>Rated breaking current under arcing conditions</th>
<th>Frequency of the rated making current f0</th>
<th>Rated values of the isolating distance d0</th>
<th>Rated filling pressure P0 at 20 °C</th>
<th>Rated short-circuit breaking current Icu</th>
<th>Rated short-circuit making current Icm</th>
<th>Rated short-time current Ict</th>
<th>Rated operating times O-0.3 s-CO-3 min-CO-15 s-CO</th>
<th>Electrical class</th>
<th>Operating times with release</th>
<th>Command times</th>
<th>Operating time for disconnector and earthing switch with motor-acted drive mechanism, 160 W</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2</td>
<td>31.5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>10000</td>
<td>10000</td>
<td>45</td>
<td>33</td>
<td>35</td>
<td>12</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>10000</td>
<td>10000</td>
<td>45</td>
<td>33</td>
<td>35</td>
<td>12</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>10000</td>
<td>10000</td>
<td>45</td>
<td>33</td>
<td>35</td>
<td>12</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31.5</td>
<td>31.5</td>
<td>31.5</td>
<td>31.5</td>
<td>31.5</td>
<td>31.5</td>
<td>31.5</td>
<td>31.5</td>
<td>31.5</td>
<td>1600</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31.5</td>
<td>31.5</td>
<td>2000</td>
<td>–</td>
<td>1000</td>
<td>2000</td>
<td>10000</td>
<td>10000</td>
<td>45</td>
<td>33</td>
<td>35</td>
<td>12</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31.5</td>
<td>31.5</td>
<td>2000</td>
<td>–</td>
<td>1000</td>
<td>2000</td>
<td>10000</td>
<td>10000</td>
<td>45</td>
<td>33</td>
<td>35</td>
<td>12</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31.5</td>
<td>31.5</td>
<td>1000</td>
<td>–</td>
<td>1000</td>
<td>–</td>
<td>10000</td>
<td>10000</td>
<td>45</td>
<td>33</td>
<td>35</td>
<td>12</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

1) 1,000 A also possible
2) with motor-actuated fans
3) capacitive class for cable switch; if capacitor bank switching is defined, then also valid for this application
4) max. normal current 280 A, as capacitor bank current features harmonics
5) on request
WSA/WSB with vacuum circuit-breaker and disconnector, 36 KV

<table>
<thead>
<tr>
<th>Type</th>
<th>Panel width (mm)</th>
<th>Rated voltage (kV)</th>
<th>Rated lightning impulse withstand voltage (kV)</th>
<th>Rated power frequency withstand voltage (kV)</th>
<th>Rated filling pressure P_m at 20 °C (MPa)</th>
<th>Rated frequency f_r (Hz)</th>
<th>Rated (normal) current I_r (A)</th>
<th>Rating (50/60 Hz)</th>
<th>Rated peak withstand current I_{pk} equal to rated short-circuit making current I_{lk} (kA)</th>
<th>Rated short-time current I_{t_s} (1 s kA)</th>
<th>Rated short-time current I_{t_3} (3 s kA)</th>
<th>Rated short-circuit breaking current I_{sc} (kA)</th>
<th>Percentage value of the DC component E2</th>
<th>Electrical class E2</th>
<th>Rated operating sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSA/B 6/36-2/623</td>
<td>600</td>
<td>36</td>
<td>170</td>
<td>70</td>
<td>195/80</td>
<td>0.05</td>
<td>50/60</td>
<td>0.075</td>
<td>1600</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>37</td>
<td>E2</td>
<td>E2</td>
</tr>
<tr>
<td>WSA/B 6/36-2/623</td>
<td>600</td>
<td>36</td>
<td>170</td>
<td>70</td>
<td>195/80</td>
<td>0.075</td>
<td>50/60</td>
<td>0.075</td>
<td>1600</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>37</td>
<td>E2</td>
<td>E2</td>
</tr>
<tr>
<td>WSA/B 6/36-2/623</td>
<td>600</td>
<td>36</td>
<td>170</td>
<td>70</td>
<td>195/80</td>
<td>0.075</td>
<td>50/60</td>
<td>0.075</td>
<td>1600</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>37</td>
<td>E2</td>
<td>E2</td>
</tr>
<tr>
<td>WSA/B 8/36-2/623</td>
<td>600</td>
<td>36</td>
<td>170</td>
<td>70</td>
<td>195/80</td>
<td>0.075</td>
<td>50/60</td>
<td>0.075</td>
<td>1600</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>37</td>
<td>E2</td>
<td>E2</td>
</tr>
<tr>
<td>WSA/B 8/36-2/623</td>
<td>600</td>
<td>36</td>
<td>170</td>
<td>70</td>
<td>195/80</td>
<td>0.075</td>
<td>50/60</td>
<td>0.075</td>
<td>1600</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>37</td>
<td>E2</td>
<td>E2</td>
</tr>
<tr>
<td>WSA/B 8/36-2/623</td>
<td>600</td>
<td>36</td>
<td>170</td>
<td>70</td>
<td>195/80</td>
<td>0.075</td>
<td>50/60</td>
<td>0.075</td>
<td>1600</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>37</td>
<td>E2</td>
<td>E2</td>
</tr>
</tbody>
</table>

Notes:
- LS = Power category
- TS = Disconnector
- E = Earthing switch

* higher categories or values available on request

The table above provides detailed specifications for the WSA/WSB vacuum circuit-breaker and disconnector, including rated values for insulation levels, operating sequences, and various current ratings. Each row corresponds to a different type with specific details such as panel width, rated voltage, and operating parameters. The table ensures comprehensive coverage for selection purposes, aligning with the needs of electrical systems requiring high reliability and safety standards.
electrical class of the outgoing earthing switch: E2

1) 1,000 A also possible
2) with motor-actuated fans
3) capacitive class for cable switch; if capacitor bank switching is defined, then also valid for this application
4) max. normal current 280 A, as capacitor bank current features harmonics
5) on request
Design of the WSA/WSB panels

The prefabricated, type-tested WS panels are metal-enclosed. SF₆ gas is used as insulating medium. The modular design of a panel comprises the following units: busbar component and three-position switch, circuit-breaker component with drive box, low-voltage cabinet and supporting structure with cable connection area. The busbar compartment and the circuit-breaker compartment are segregated from each other.

The gas tanks made of CrNi steel accommodate the busbars and the vacuum circuit-breaker. The outgoing feeder area comprises the post insulators, the busbar terminal leads and the cable connection parts. In this area, the gas tank has three tubular extensions onto which the low-voltage toroidal-core current transformers are mounted coaxially; these can be replaced – in case of the single cable connection – without opening the gas compartment.

In case of double busbar panels, the 2nd busbar system is arranged above busbar system 1. The busbar compartment is segregated from the circuit-breaker compartment metallically and as regards gas leakage. In the case of double busbar panels, both busbar compartments are segregated from each other, and the second busbar system is also segregated from the circuit-breaker compartment metallically and as regards gas leakage. Busbar compartment 1 houses the three-position switch, and busbar compartment 2 accommodates the two-position switch. The supporting structure, designed as a metalenclosed cable connection compartment, is located below the central high-voltage component. The low-voltage cabinet mounted in front of it terminates the lower panel front.

Each gas-filled cladded compartment has its own pressure relief device.

- each circuit-breaker compartment
- each busbar system, or each busbar compartment

Thanks to their modular design, the panels can be extended subsequently so that prepared reserve panels can be completed, and e.g. a circuit-breaker can be mounted/removed without isolating the busbars or the adjacent panels.
The M enclosure system combines the advantages of both threephase enclosure and - through the additional metallic partitions between the phases in all gas-filled cladded compartments – the electrical advantages of single-pole enclosure. In zones with low field intensity, the metallic partitions have feed-through openings for communication between the individual partial gas compartments. This M enclosure is the prerequisite for a compact modular design which enables extremely spacesaving solutions in case of double busbar configurations.

Features of the M enclosure
- no partial discharge possible between the phases
- self-extinguishing of earth fault currents in compensated systems
- extremely low sheath currents
- small space requirement of switchgear, especially in case of double busbar systems
- clearly structured and easily accessible design
- straightforward drive kinematics for all switching devices
- practical disconnection feature of circuit-breaker module in case of energized busbars and adjacent panels
- straightforward and clearly structured gas compartment technology

Thus, the M enclosure used combines the advantages of threephase and single-phase enclosure. Moreover, the systematic metallic segregation of the functional compartments satisfies high demands regarding protection against accidental contact in case of any work which might be required.

Modules of a switchgear panel

Module A Circuit-breaker drive
- Switching device "vacuum circuit-breaker"
- Drive component Circuit-breaker drive, drives for the two-/three-position switches including all interlocks, the auxiliary switches and the low-voltage plugging device
- Motor-operated drive mechanism to charge the energy-storing device
- Auxiliary switch with 8, 12, 16 or 20 switching elements; 8 switching elements are required for the basic circuit (standard contact coating: silver)
- Passing contact Wiping time prolongation (Standard contact coating: silver)
- Push switches actuated by the energy storing device. (The push switches for the basic circuit are included in the basic design)
- Push switches actuated by “ON-OFF” pushbutton. (The basic design includes 1 push switch each)
- Shunt closing release 1 ea.
- Shunt tripping coil 1 or 2 ea. with or without auxiliary spring energy store
- Secondary release 1 or 2 ea., or 3 ea. in case of design without undervoltage release
- Undervoltage release with or without time delay
- Blocking coil on “ON” pushbutton. Always required on tie breaker in case of bus section coupler and bus coupler, consisting of 2 panels (switchgear panel + busbar riser panel)
- Blocking coil on “OFF” pushbutton. Always required on tie breaker in case of bus section coupler and bus coupler, consisting of 1 or 2 panels (switchgear panel + busbar riser panel)
- Locking mechanism with lock (for vacuum circuit-breaker and three-position switch)
- Operating counter
Module B I Basic tank with busbar 1
- Gas tank
- Busbar 1
- Three-position switch
- Lower appliance couplers
- Rear appliance couplers (on request)
- Toroidal-core current transformer
- Pressure

Module B II Basic tank with busbar 2
- Gas tank
- Busbar 2
- Disconnector
- Pressure relief device for circuitbreaker compartment

Module C Supporting structure and cable connection
- Supporting structure
- Cable terminals
- Cable supports
 optional:
 second voltage detection system IVIS on the back of the supporting structure

Module D Low-voltage cabinet
Accommodating all protective equipment, for the voltage detection system IVIS, and other low-voltage components.

Supplementary parts for the two-/three-position switch
- Motor-operated drive mechanism In case of single busbar with three-position switch per motoroperated drive mechanism for the function “Disconn. I-O” and the function “Earth I-O”. In case of double busbar panels, the two-position disconnector of the busbar system 2 with one motor drive can be utilized for the function “Disconn. I-O”.
- Auxiliary switches with 2 to 20 elements, each for the functions “Disconn. I-O” and “Earth I-O”

Technical description

Circuit-breaker module
The modular vacuum circuit-breaker with drive housing comprises the fully functional unit: vacuum circuit-breaker with the three poles arranged side by side, circuit-breaker drive, drive for three-position switch of busbar 1 or, additionally in case of double busbar panels, drive for the disconnector of busbar 2, all the auxiliary equipment (e.g. auxiliary switch, auxiliary release etc.) and mechanical interlocking block. The circuit-breaker module is flange-mounted to the gas-filled cladded compartment of the circuit-breaker compartment and can thus be removed from the system in a straightforward fashion without switching off the busbars and without affecting the adjacent panels. The interfaces to the high and low-voltage components are pluggable.

Low-voltage cabinet
On the switchgear front, below the control panel, there is a spacious low-voltage cabinet, at choice with inspection glass (size 1: 480 mm x 485 mm, size 2: 426 mm x 850 mm). It is fully shrouded and segregated from the high-voltage components in a pressure-proof fashion. The built-in units are installed, amongst other things, in the swing frame. Thus, the secondary equipment has ample space and is easily accessible, and functional elements with indicators are clearly visible. On the secondary end, the low-voltage cabinet and the circuitbreaker module are connected to a 64-pole screw-connected plug- and- socket connector.

Installation in the swing frame is especially advantageous for the digital protection relay and the bay computer of a computerized control system, as these feature e.g. a display and/or multiple LED function indicators.

The voltage indicator system IVIS on the front is also located in the low-voltage cabinet.
Cable connection/ bar connection
The cables are connected in conformity with the system via fully insulated connectors in the standard inner or outer cone-type system, or via fully the insulated conductor bar system.

Metal-enclosed cable connection systems are mainly suitable for connecting plastic cables.

The cable or bar connection systems are adapted to the rated current of the switchgear panel concerned. Multiple cable connections are also suited e.g. to connect voltage transformers or pluggable surge arresters.

Surge arrester
Metal-enclosed surge arresters can be connected to protect the medium-voltage switchgear and the consumers mounted downstream against external overvoltages.

Cable testing
DC voltage tests are performed on the connected cables without interfering with the metal-enclosed cable connection compartment, without pulling off/ releasing the cable end boxes and without introducing test equipment into the gas compartment.

In switch position “outgoing feeder earthed”, cable test connectors are mounted and the external cable test equipment connected to therear test sockets. The cable test as such is performed with the vacuum circuit-breaker in position OFF and the three-position switch in position “Earth I”.
For connection of the test equipment, rear-side connectors are available on request at a height of approx. 1.2 m above floor level.

Voltage detection system IVIS
IVIS is an intelligent electronic voltage detection system with integrated indicator to determine the operating voltage and zero voltage – optional – in medium-voltage switchgear. The system has been designed for maximum operatingreliability. It does not require supply from an external source. It features climate-proof encapsulated electronics and is maintenance-free, due to permanent monitoring of the indication thresholds. The signal evaluation and display electronic system is designed for redundancy. Phase coincidence is determined via hermetically shielded measuring sockets which are an integral part of the system. IVIS meets the requirements according to IEC 61243-5, VDE 0682 part 415, for integrated voltage indication systems.

IMOS Monitoring and Operating System
The Intelligent Monitoring and Operating System IMOS can be used optionally for operation and control of medium-voltage switchgear. A central control unit is provided for operator control.

Mechanical actuation is possible in case of failure of the auxiliary voltage. The digital protection and measuring relays in the switchgear are retained as autonomous units. IMOS processes the signals of the conventional relay outputs emitted from these protection and measuring relays. IMOS provides a userfriendly and comfortable operating functionality. These properties help relieve the operators’ workload.

The central screen
■ comprises a fully graphic colour screen; all operating screens appear in the form of logical and user-friendly graphs
■ informs the user about all data of individual sections or about the entire switchgear
■ provides ergonomically designed operating functions in professional design
■ permits continuous operator guidance
■ provides information in clear, non-coded text in long form.
Outgoing feeder earthing

The vacuum circuit-breaker’s high making capacity is used advantageously for earthing the outgoing and incoming and feeders. The combination of the three-position switch and the vacuum circuitbreaker permits earthing of the WS series with actuating processes in analogy to conventional switchgear with firmly installed switching devices. When the vacuum circuitbreaker is ready to operate, it is switched ON and OFF automatically during the actuation “Earth I” or “Earth 0” by a mechanical intertripping circuit. The WS series does not require separate actuations, e.g. for the process “Prepare earthing” and “Connect vacuum circuitbreaker for earthing”, as well as the provision/actuation of additional releases or locks. In position “Earth I”, opening the vacuum circuit-breaker is prevented by mechanical and electrical means. An additional earthing feature for work can be utilized optionally on the cable end via the test sockets at the rear, e.g. if the vacuum circuit-breaker module has been removed.

Busbar earthing

For earthing, a 200 mm wide module with a make-proof earthing switch actuated on the panel front can be arranged in line with or at the end of the busbar.

Another possible way of system earthing is provided by the three-position switch and vacuum circuit-breaker in bus section coupler and bus coupler panels with two panel widths.

To perform earthing for work purposes, a 200 mm module element with plug-and-socket connectors can be provided for the earthing device.

Earthing device

A manually operated earthing device can be installed in the rear cable test sockets as system earthing and earthing in the outgoing feeder.

Current transformer in outgoing feeder area

The current transformers are of toroidal-core transformer design and are mounted on the areas of the cable outgoing feeder with single-pole enclosure. In the outgoing feeder area of the panel, several transformer cores per phase can be arranged up to the maximum stacking height provided. A measuring core of the toroidal-core current transformer kit per phase permits billing metering using calibratable or calibrated meters, pursuant to the German provisions for calibrated transformers. Billing metering can be performed in combination with calibratable/calibrated voltage transformers in the outgoing feeder block or on the busbar.

Dimensions of toroidal-core current transformers in outgoing feeder area:

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside diameter</td>
<td>185 mm</td>
</tr>
<tr>
<td>Outside diameter</td>
<td>275 mm</td>
</tr>
<tr>
<td>Standard design:</td>
<td></td>
</tr>
<tr>
<td>Stacking height incl.</td>
<td>max. 250 mm</td>
</tr>
<tr>
<td>Optional:</td>
<td></td>
</tr>
<tr>
<td>Stacking height incl.</td>
<td>max. 490 mm</td>
</tr>
<tr>
<td>intermediate layer</td>
<td></td>
</tr>
</tbody>
</table>
Voltage transformer on busbar

- Flange-mounted transformer with isolating device

 The busbar voltage transformers are normally designed as metal-enclosed flange-mounted transformers with single-pole insulation. The transformers are flange-mounted via pluggable inner cone-type connections and can be replaced without gas-handling. A three-phase pluggable device with the positions “transformer ON” and “transformer earthed” enables disconnection of the medium-voltage components from the busbar and safe primary earthing of the transformers. If required, the metal-enclosed voltage transformers can be replaced safely with the busbar energized.

- Metal-enclosed voltage transformers without isolating device

 Preferably in combination with voltage transformers in line with the busbar, busbar voltage transformers can be designed as hived off metal-enclosed transformers. The connection between the busbar connection module with a width of 200 mm (connection of voltage transformers only) or 600 mm (busbar voltage transformer combined with busbar transformer terminal) and the transformer is established using fully insulated cable connector systems via highly flexible trailing cables. Dual-kit voltage transformers incl. dual-kit resistors for the procurement of the e/n windings, for example, are installed in a switchgear module with a width of 600 mm.

Voltage transformer in outgoing feeder area

The preferred design comprises metal-enclosed inductive voltage transformers directly flange-mounted to the outgoing feeder block, with isolating / earthing device mounted upstream. An externally actuated isolating device allows for disconnecting the voltage transformers from the main circuit in case of DC voltage tests on the cable. This isolating device features two positions “ON” and “Voltage transformer earthed”. In the earthed position, voltage transformers, for example, can be replaced safely, as required, while the main circuit remains operative.

Directly flange-mounted voltage transformers can also be delivered for billing metering.
Product description (contd.)

Current transformer in line with busbar

In line with the busbars, toroidalcore current transformers can be installed outside of the gas atmosphere on single-phase enclosed tank components.

Dimensions:
- Inside diameter: 135 mm
- Outside diameter: 195 mm
- Stacking height incl. intermediate layer: max. 180 mm

In combination with busbar voltage transformers, a calibrated transfer / billing metering can be realized in line with the busbar of WSA and WSB.

Current transformers in the bus coupler in case of panel widths up to 1250 A

Dimensions:
- Inside diameter: 135 mm
- Outside diameter: 195 mm
- Stacking height incl. intermediate layer: max. 80 mm

<table>
<thead>
<tr>
<th>Technical data</th>
<th>Metal-enclosed, single-pole voltage transformers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. service voltage kV</td>
<td>12</td>
</tr>
<tr>
<td>Primary voltage kV</td>
<td>5.0/√3</td>
</tr>
<tr>
<td></td>
<td>6.0/√3</td>
</tr>
<tr>
<td></td>
<td>6.6/√3</td>
</tr>
<tr>
<td></td>
<td>7.2/√3</td>
</tr>
<tr>
<td></td>
<td>10.0/√3</td>
</tr>
<tr>
<td></td>
<td>11.0/√3</td>
</tr>
<tr>
<td>Secondary voltage V</td>
<td>100/√3</td>
</tr>
<tr>
<td></td>
<td>110/√3</td>
</tr>
<tr>
<td>Auxiliary winding for earth fault detection V</td>
<td>100/3</td>
</tr>
<tr>
<td></td>
<td>110/3</td>
</tr>
<tr>
<td>Secondary, thermal limit current of measuring winding A</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>(12)</td>
</tr>
<tr>
<td>Rated voltage factor Uj/8h</td>
<td>1.9</td>
</tr>
<tr>
<td>Rated continuing current/8h A</td>
<td>6</td>
</tr>
<tr>
<td>Accuracy class</td>
<td>0.2–0.5–1</td>
</tr>
<tr>
<td>Power VA</td>
<td>15–50–120</td>
</tr>
<tr>
<td></td>
<td>(45–100–200)</td>
</tr>
<tr>
<td>Standards</td>
<td>IEC 60186, DIN VDE 0414</td>
</tr>
</tbody>
</table>

Calibratable/calibrated winding available on special request

() on request

Flange-mounted transformer with primary protection in outgoing feeder / incoming feeder: up to 24 kV available on request
Technical data of toroidal-current transformer

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service voltage</td>
<td>max. 0.8 kV</td>
</tr>
<tr>
<td>Rated power frequency withstand voltage</td>
<td>3 kV (winding test)</td>
</tr>
<tr>
<td>Rated frequency</td>
<td>50/60Hz</td>
</tr>
<tr>
<td>Continuous thermal current</td>
<td>1.0 x In (1.2 x In on request)</td>
</tr>
<tr>
<td>Rated thermal short-time current</td>
<td>max. 31.5 kA, max. 3 s</td>
</tr>
<tr>
<td>Primary rated current</td>
<td>50 to 2500 A</td>
</tr>
<tr>
<td>Multiratio properties secondary</td>
<td>200-100 to 2500-1250 A</td>
</tr>
<tr>
<td>Secondary rated current</td>
<td>1A (5A on request)</td>
</tr>
<tr>
<td>Number of cores</td>
<td>max. 3, higher number on request</td>
</tr>
<tr>
<td>Core data</td>
<td></td>
</tr>
<tr>
<td>Measuring core</td>
<td>2.5 to 10 VA</td>
</tr>
<tr>
<td>Protection core</td>
<td>2.5 to 30 VA</td>
</tr>
<tr>
<td>Class / overcurrent factor</td>
<td>0.2 to 1 / M10</td>
</tr>
<tr>
<td>Admissible ambient temperature</td>
<td>max. 60 °C</td>
</tr>
<tr>
<td>Standards</td>
<td>IEC 60185, VDE 0414</td>
</tr>
</tbody>
</table>

Calibratable/calibrated model available on special request

Interlocks and switchgear interlocking

Interlock Single busbar

The systematic, continuous mechanical interlock between vacuum circuit-breaker and three-position switch and the actuation of the three-position switch has been designed so as to ensure that the operator can proceed as normal, in analogy to conventional switchgear with fixed installations. This means separate, completely interlocked actuations for the switching procedures "Establishing isolating distance" and "Earthing". The procedure "Earth I" can only be performed with the three-position switch in disconnected position, the vacuum circuit-breaker OFF and the vacuum circuit-breaker’s energy storing device precharged. With the three-position switch in earthing position, the vacuum circuit-breaker is connected positively by a mechanical intertripping circuit. In "Earth ON" position, the vacuum circuit-breaker is interlocked against mechanical and electrical opening.

Vice versa, on de-earthing, the vacuum circuit-breaker is first switched off positively by mechanical means, and then the conditions for the isolating distance are established. The interlocks ensure that each switching operation is always performed completely. This prevents both reversal of the motion once the switching operation has commenced, as well as removal of the operating crank before the defined end position is reached.

Interlock Double busbar

In case of interlocks with motorized three-position or two-position disconnector in double busbar switchgear, some of the intra- and inter-panel interlocking functions are performed by electro-magnetic interlocks (blocking coils). This also applies for motorized three-position or two-position disconnectors in single-busbar switch gear.

WSA and WSB fulfil the following internal interlocking functions of a panel:

- No closing of a disconnector with the vacuum circuit-breaker closed or outgoing feeder earthed.
- No opening of a disconnector with the vacuum circuit-breaker closed.
- Closing the vacuum circuit-breaker only in the defined end positions of the disconnector.
- No outgoing feeder earthing with the disconnector engaged.
- No outgoing feeder earthing with the vacuum circuit-breaker closed. No outgoing feeder earthing without the vacuum circuit-breaker’s readiness to operate.
Positive mechanical connection of vacuum circuit-breaker on earthing the outgoing feeder.
Positive mechanical disconnection of vacuum circuit-breaker on deaering the outgoing feeder.

The following has been ensured:
The operating crank for the disconnecting and earthing functions can only be removed after the defined end positions have been reached. The vacuum circuit-breaker cannot be actuated with the crank inserted for the disconnection or earthing procedure.
The vacuum circuit-breaker cannot be switched off with the "outgoing feeder earthing ON".
An operating crank can only be inserted for disconnection or earthing once the insertion port has been released via a manual interrogation system.
All interlocks can also be effective with motorized three-position disconnectors.
In case of single busbar switchgear, all interlocks for manually actuated switching devices are effected mechanically. In the case of double busbar switchgear, this is performed mechanically and electro-magnetically (blocking coils).

Due to its systematic design and accuracy, this interlocking system fulfils all requirements of optimum switchgear interlocking.
- In the case of exclusively electrically actuated switchgear, the electromagnetic interlocks can be dispensed with on request and be replaced, if necessary, by mechanical locks.
- If a switchgear control system is used, all interlocking functions are performed by microprocessors, so that the electromagnetic interlocks can be dispensed with in case of electrical actuations. Special interlocking conditions for mechanical manual emergency actuation are stipulated depending on the specific project in question.
- In the case of double busbar systems with bus couplers, change-over from one system to the other without interrupting the power supply is standard, contrary to the above specifications.

Sealed for life
The cladded gas compartments of the WS series are hermetically sealed pressure systems acc. to IEC 60694 (new IEC 62271-2). Replenishing insulating gas SF₆ during normal operation is not necessary during the expected useful life.
Gas compartment monitoring

Several gas-filled cladded compartments are combined for gas compartment monitoring. The gas compartment connections are pipe connections with a small crosssection, located outside of the enclosure. The individual gas compartments are connected by valves which can be coupled. The valves are designed so as to permit only one of the two states – coupled or isolated. As long as the valves are disconnected, meaning that the gas compartment connection is interrupted, each of the gas compartments in question is closed gas-tight. This enables each cladded compartment to be uncoupled from the integrated gas compartment e.g. when removing a vacuum circuit-breaker module or when expanding the switchgear. The integrated series WS gas compartment technology is especially positive in case of any gas leakage from the switchgear.

Gas compartment monitoring by Intelligent Gas Information System IGIS Single busbar WSA
Gas compartment monitoring by Intelligent Gas Information System IGIS Double busbar WSB

In the case of integrated gas-filled cladded compartments, the number of measured variables resulting from the monitoring of each gasfilled functional compartment is computed to a single measured variable. This considerably reduces monitoring complexity while increasing reliability. Each of the integrated gas-filled cladded compartments features a single sensor for monitoring the gas status. The signals measured by the pressure and temperature sensors are evaluated in the digital IGIS monitoring system. If the actual values fall below the programmed pressure values, this is signalled via two graduated warning levels. The pressure value can be interrogated locally via a display on the IGIS device to which max. three pressure sensors are connected.

In the case of single busbar WSA’s, the busbar system forms an integrated gas-filled cladded compartment, as far as monitoring is concerned. All circuit-breaker compartments form the second integrated gas-filled cladded compartment.

In the case of double busbar WSB’s, the second busbar system is additionally monitored via another pressure sensor. A double busbar system with two busbar sections and bus section couplers each comprises e.g. six integrated gas compartments.

A design with analog pressure gauges incl. auxiliary contacts for remote signalling is available optionally.

Pressure relief device

Each gas-filled cladded compartment of a WS switchgear is equipped with a pressure relief device. The pressure relief is primarily effected upwards and to the rear.

System for detection of the insulating gas pressure IGIS

IGIS is an intelligent electronic system for recording temperature compensated insulating gas pressure in gas-insulated medium-voltage switchgear. It is used for automatic, permanent monitoring of the insulating gas pressure during operation, and - if necessary - for issuing quick signals to the switchgear and the control room. IGIS uses a microcontroller which has proved extremely efficient in industry. Comprehensive self-monitoring for peripheral and internal components alike and a practice-proven system architecture ensure the reliability of IGIS.
Range of equipment

Basic modules of a Single busbar WSA switchgear

- **Circuit-breaker panel**
 - Circuit-breaker
 - Disconnecting / earthing switch
 - Toroidal-core current transformer
 - Single cable connection

- **Circuit-breaker panel**
 - Circuit-breaker
 - Disconnecting / earthing switch
 - Toroidal-core current transformer
 - Multi-cable connection
 - Disconnectable, flangemounted voltage transformers

- **Circuit-breaker panel**
 - Circuit-breaker
 - Disconnecting / earthing switch
 - Toroidal-core current transformer
 - Multi-cable connection
 - Disconnectable, flangemounted voltage transformers with primary fuse protection (on request in case of 36 kV)

- **Circuit-breaker panel**
 - Circuit-breaker
 - Disconnecting / earthing switch
 - Toroidal-core current transformer
 - Single cable connection
 - Disconnectable, flangemounted voltage transformers on the busbar

- **Bus section coupler**
 - Circuit-breaker
 - Disconnecting / earthing switch
 - Toroidal-core current transformer
 - Lower busbar tie connection in gas-filled cladded compartment

- **Bus sectionalizer**
 - Circuit-breaker
 - Disconnecting / earthing switch
 - Toroidal-core current transformer
 - Lower busbar tie connection in gas-filled cladded compartment

with disconnector in line with busbar.
Basic modules of a single busbar WSA switchgear

End panel
Cable and/or fully insulated conductor bar terminal downwards for max. 1x inner cone-type bushing size 2 and 1x size 3 or 1x3 fully insulated conductor bar as well as 1x inner cone-type bushing size 2 (e.g. for voltage transformers connected via cable)

End panel
Cable and/or fully insulated conductor bar terminal upwards for max. 1x inner cone-type bushing size 2 and 1x size 3 or 1x3 fully insulated conductor bar as well as 1x inner cone-type bushing size 2 (e.g. for voltage transformers connected via cable)

Busbar metering panel
with current transformers in line with busbar

Busbar metering panel
with current transformers in line with busbar - metal-enclosed voltage transformers in outgoing feeder area, connected via cable

Busbar earthing
with earthing switch in line with busbar

1 Cable connection and earthing for work purposes on the busbar. e.g. for metal-enclosed busbar voltage transformer or cable connections. Inner cone size 1 or 2

2 Fully insulated conductor bar terminal forward, to busbar ends
Basic modules of a Double busbar WSB switchgear

- **Circuit-breaker panel**
 - Circuit-breaker
 - Disconnecting / earthing switch
 - Toroidal-core current transformer
 - Single cable connection

- **Circuit-breaker panel**
 - Circuit-breaker
 - Disconnecting / earthing switch
 - Toroidal-core current transformer
 - Multi-cable connection
 - Disconnectable, flangemounted voltage transformers

- **Circuit-breaker panel**
 - Circuit-breaker
 - Disconnecting / earthing switch
 - Toroidal-core current transformer
 - Multi-cable connection
 - Disconnectable, flangemounted voltage transformers with primary fuse protection (on request in case of 36 kV)

- **Bus coupler**
 - Circuit-breaker
 - Disconnecting / earthing switch
 - Toroidal-core current transformer
 - Lower busbar tie connection in gas-filled cladded compartment

- **Bus section coupler in single panel width, with**
 - Circuit-breaker
 - Disconnecting / earthing switch
 - Toroidal-core current transformer
 - up to max. 1250 A

- **Circuit-breaker panel**
 - Circuit-breaker
 - Disconnecting / earthing switch
 - Toroidal-core current transformer
 - Single cable connection
 - Disconnectable, flangemounted voltage transformers on the busbar
Basic modules of a Double busbar WSB switchgear

Bus sectionalizer
with disconnecter in line with busbar

End panel
Cable and/or fully insulated conductor bar terminal upwards for max. 1x inner cone-type bushing size 2 and 1x size 3 or 1x3 fully insulated conductor bar as well as 1x inner cone-type bushing size 2 (e.g. for voltage transformers connected via cable)

Busbar metering panel
with current transformers in line with busbar

Busbar metering panel
with current transformers in line with busbar

Busbar earthing
with earthing switch in line with busbar

1. Cable connection and earthing for work purposes of busbar, e.g. for metal-enclosed busbar voltage transformer or cable connections. Inner cone size 1 or 2
2. Fully insulated conductor bar terminal forward, to busbar ends
Weight of panels

Single Busbar ESS

<table>
<thead>
<tr>
<th>Nominal current</th>
<th>Busbar/ Outgoing feeder</th>
<th>1250/1250</th>
<th>Busbar/ Outgoing feeder</th>
<th>2500/1250</th>
<th>Busbar/ Outgoing feeder</th>
<th>2500/2500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight A</td>
<td>approx. kg</td>
<td>approx. kg</td>
<td>approx. kg</td>
<td>approx. kg</td>
<td>approx. kg</td>
<td>approx. kg</td>
</tr>
<tr>
<td>Circuit-breaker panel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single cable connection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toroidal-core current transformer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB Riser</td>
<td>630</td>
<td>710</td>
<td>880</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bus section coupler in 2 module widths</td>
<td>CB Riser</td>
<td>540</td>
<td>500</td>
<td>690</td>
<td>650</td>
<td></td>
</tr>
<tr>
<td>lower busbar transition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bus sectionalizer with disconnector in the busbar run</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End panel for cable or fully insulated connection to busbar (top or bottom)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Busbar metering panel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with current transformer in the busbar run (without metal-enclosed voltage transformers) connected via cables in the outgoing feeder area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Busbar metering with current transformer along with busbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-cable connection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disconnecting device for voltage transformer in the outgoing feeder block</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disconnecting device for Voltage transformer on busbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Busbar earthing with earthing switch in the busbar run</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-voltage cabinet without extension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with extension</td>
<td>80 to 150</td>
<td>80 to 150</td>
<td>80 to 150</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Double busbar DSS

<table>
<thead>
<tr>
<th>Circuit-breaker panel</th>
<th>Single cable connection</th>
<th>Toroidal-core current transformer</th>
<th>CB Riser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>710</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>740</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>950</td>
</tr>
<tr>
<td>Bus coupler in 1 panel width</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>950</td>
</tr>
<tr>
<td>Bus coupler in 2 panel width</td>
<td>CB Riser</td>
<td>590</td>
<td>670</td>
</tr>
<tr>
<td>Bus section coupler of lower busbar in 2 panel widths</td>
<td>CB Riser</td>
<td>590</td>
<td>550</td>
</tr>
<tr>
<td>Bus section coupler of upper busbar in 2 panel widths</td>
<td>CB Riser</td>
<td>790</td>
<td>750</td>
</tr>
<tr>
<td>Busbar metering panel with current transformer in the busbar run (without metal-enclosed voltage transformers) connected via cables in the outgoing feeder area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disconnecting device for Voltage transformer on busbar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disconnecting device for Voltage transformer in the outgoing feeder block</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-cable connection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Busbar metering with current transformer along with busbar cable or fully insulated connection to busbar (top or bottom)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Busbar earthing with earthing switch in the busbar run</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-voltage cabinet without extension</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with extension</td>
<td>80/180</td>
<td>80/180</td>
<td>80/180</td>
</tr>
</tbody>
</table>
Inner cone-type system
The medium-voltage cables are connected to the WS panels via the inner cone-type plug-in terminations. The WS switchgear comprises inner cone-type appliance couplers as per EN 50181
■ terminal type 1 / size 1: 630 A,
■ terminal type 2 / size 2: 800 A,
■ terminal type 3 / size 3: 1250 A,
■ terminal type 4 / size 4: 2500 A.

The specifications of the plug-in terminations' manufacturers regarding selection and assembly of the plug-in terminations must be adhered to. This does not only apply to the selection of size, but also for all electrical rated data, coordinated to match the WS switchgear's data.

It is essential that all appliance couplers in WS panels which are not assigned plug-in terminations correctly using tension springs and fully shrouded insulating terminals/dummy plugs.

Sizes 1 to 3 inner cone-type cable plug-in terminations for attachment to the WS do not require any capacitive coupling. The coupling electrode for the capacitive voltage detection system is an integral part of the appliance couplers installed in the switchgear panel.

Inner cone-type system for cable test sockets
The cable high-voltage test can be performed via inner cone-type appliance couplers on the rear side of the panel (optional design). Design as per EN 50181, terminal type 1/size 1. Also optionally available: terminal type 2/size 2.

<table>
<thead>
<tr>
<th>12 kV, 24 kV, 36 kV</th>
<th>Number of appliance couplers per phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSA and WSB</td>
<td></td>
</tr>
<tr>
<td>without flange-mounted voltage transformers</td>
<td>Size 1 630 A</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

WSA shown)

<table>
<thead>
<tr>
<th>with flange-mounted voltage transformers including isolating device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

WSA shown)
Inner cone-type system Size 4 in outgoing feeder

For single-conductor cables with very high cross sections up to 1000 mm² the following variants of the cable connection tank are available:

<table>
<thead>
<tr>
<th>Number of appliance couplers per phase</th>
<th>Size 4 2500 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>without flange-mounted outgoing voltage transformers</td>
<td>1</td>
</tr>
<tr>
<td>with flange-mounted outgoing voltage transformer</td>
<td>1 (on request)</td>
</tr>
</tbody>
</table>

Inner cone-type system Size 1, 2 and 3 on the busbar

<table>
<thead>
<tr>
<th>Number of appliance couplers per phase</th>
<th>Size 1 630 A</th>
<th>Size 2 800 A</th>
<th>Size 3 1250 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 kV, 24 kV, 36 kV 600 mm wide busbar tank for WSA and WSB Cable end leads: no at the bottom: lower BB system at the top: upper BB system</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

(WSB shown)
Cable connections (contd.)

Outer cone-type couplers 630 A in outgoing feeder

Standardized cable terminals as per EN 50181, connection type C, 630 A are used in the 630 A outgoing feeder panels, e.g. to connect belted cables up to 12 kV.

<table>
<thead>
<tr>
<th>12 kV WSA and WSB</th>
<th>Number of appliance couplers 630 A per phase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Outer cone with inside thread M 16x2 as per EN 50181</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

- Without flange-mounted voltage transformers including adapter for conventional cable lug terminal; not fully shrouded, insulated connection of belted cables

Cable connection adapter Raychem RCAB 10 kV in conjunction with Raychem cable end box systems IXSU-F, TFTI-31... UHGK/EPKT and transition end box from paper-insulated belted cable to flexible EPR-conductors: SMOE

The rear cable test sockets can also be designed as outer cone-type system as per EN 50181, terminal type C, 630 A.

Cable connections on busbars with outer cone-type system available on request.
The following are a selection of examples which take the specificities of the WS models for application in various areas of the world or for special models into account.

Please contact our company to request models available for specific applications.

- Vibration-resistant design for application on open-cast equipment in mining applications.
- Specific locking devices using locks such as so-called pad locking.
- Top entry model: The outgoing feeder cables of the WS panels are routed to the top through a modified cable terminal.
- Cable end leads to the rear: for WS application in container stations, cable end leads to the rear (instead of downwards) are often preferable.
- Gas-insulated busbar connection to busbar outgoing feeder for connection of GASLINK.
- Second digital user interface arranged in front of the mechanical control panel: Today, the new switchgear protection and control devices are very frequently designed with a separate control and display panel. WS models with digital display – arranged in front of the mechanical control panel – are available on request.
- WS model for Canada, USA, Australia etc. using the so-called Pipe Window: An inspection glass enables the earthed and disconnected position of the three-position disconnector in the busbar compartment to be seen from the outside.
- For application in the Russian Federation: design and certification according to GOST R standard.
- Approval by the Electricity Association (EA) for application of the WS in the electrical power supply networks of the United Kingdom (VK) and for stationary use in railway power supply.
- Certifications and approvals of a great variety of power supply companies worldwide with their own requirements which exceed IEC standards. This is based on a specific, separate approval procedure of the power supply companies for the WS series.
The WS switchgear satisfies to a high degree the ecological requirements in view of environmental protection thanks to:

- optimization of material and energy consumption during manufacture
- compliance with all ecological requirements during its service life
- the use of recyclable materials for efficient disposal at the end of its service life.

Our design directives regarding environmentally compatible design specify the use of materials which are easily recyclable and can be disassembled. The metals which form approx. 90% of the switchgear are easily disassembled. These are 100% recycled as homogenous materials after the end of their service life.

Plastics can also be recycled. The thermosetting – i.e. non-melting – plastics can be comminuted and reused as fillers in other plastic components; the melting thermoplastic materials can be recycled as homogenous materials. This means that the material is preserved, melted and used for the construction of new durable parts. To ensure efficient and environmentally compatible disassembly and assignment of materials by the responsible disposal experts, the plastic components have been identified accordingly. Moreover, material and utilization data sheets are available to provide the customer with an overview of the materials used, and the disposal company with important information regarding the recycling process. Thus, the materials used for our products can be reused 100%.

This contributes essentially to saving primary energy and material resources.

All materials were selected and developed so that e.g. switchgear affected negatively in case of fires in buildings only affect the fire load to a minimum extent (heat development, pollutants in the emissions).

Another important ecological aspect is the longevity of our products (min. 30 to 40 years), which is an extremely long service life compared to other capital goods. The switchgear units have been designed, moreover, so as to require little maintenance which would cost energy and material, and so as to enable straightforward replacement of part components, e.g. if new controllers have been developed on the market (upgrading).

In our gas-insulated WS switchgear unit, the major part of the switchgear panel has been sealed hermetically in an insulating inert gas (sulphur hexafluoride SF6 which is neither reactive nor toxic). Thus, all environmental influences reducing the service life are shut out. The particular characteristics of the insulating gas also enable the overall size to be decreased by approx. 50% versus switchgear designed without insulating gas with comparable technical properties. This again saves a lot of material and energy required for material production. The portion of insulating gas used for WS switchgear amounts to approx. 0.5 percent by weight. Once the switchgear’s service life has elapsed, the gas is extracted completely via the disposal valve provided serially in each gas-filled, cladded compartment, and then recycled. To this effect, the gas suppliers have developed an efficient recycling concept.

During normal operation, the gas need not be replenished during the entire service life of the switchgear. The switchgear is a hermetically sealed pressure system acc. to IEC 60694 (IEC 62271-1).

Average material distribution in gas-insulated switchgear

<table>
<thead>
<tr>
<th>Materials</th>
<th>Wt. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metals</td>
<td></td>
</tr>
<tr>
<td>Steel</td>
<td>7</td>
</tr>
<tr>
<td>Copper</td>
<td>6.5</td>
</tr>
<tr>
<td>Aluminium, brass</td>
<td>2</td>
</tr>
<tr>
<td>Plastics</td>
<td></td>
</tr>
<tr>
<td>Thermosetting plastics</td>
<td>7</td>
</tr>
<tr>
<td>Thermoplastics</td>
<td>2</td>
</tr>
<tr>
<td>Elastomers</td>
<td>0.5</td>
</tr>
<tr>
<td>Electronics</td>
<td></td>
</tr>
<tr>
<td>Plastics</td>
<td>0.5</td>
</tr>
<tr>
<td>Metals</td>
<td>1</td>
</tr>
<tr>
<td>Insulating gas</td>
<td></td>
</tr>
<tr>
<td>Sulphur hexafluoride</td>
<td>0.5</td>
</tr>
</tbody>
</table>

The WS switchgear satisfies to a high degree the ecological requirements in view of environmental protection thanks to:

- optimization of material and energy consumption during manufacture
- compliance with all ecological requirements during its service life
- the use of recyclable materials for efficient disposal at the end of its service life.
Design data

Basic dimensions and flooring ducts

Space required by a WSA

Minimum clearances

- Minimum opening for placing the components: 1250 x 3000 mm
- Attention to cable radius
- Smaller dimensions available on request

Flooring ducts for cable connection/busbar connection

- HV: area for high-voltage cable entry or fully insulated bar end lead
- LV: area for low-voltage cable entry

Panel design

<table>
<thead>
<tr>
<th>T</th>
<th>Panel design</th>
</tr>
</thead>
<tbody>
<tr>
<td>1242</td>
<td>up to 1250 A outgoing rated current</td>
</tr>
<tr>
<td>1254</td>
<td>with heat sink at busbar</td>
</tr>
<tr>
<td>1434</td>
<td>with fan attachment</td>
</tr>
<tr>
<td>1371</td>
<td>with disconnectable voltage transformers in outgoing feeder</td>
</tr>
<tr>
<td>1587</td>
<td>with disconnectable voltage transformers on busbar</td>
</tr>
</tbody>
</table>

Dimensions in mm
Design data
Basic dimensions and flooring ducts (contd.)

Space required by a WSB
Minimum clearances

Minimum opening for placing the components: 1250 x 3000 mm

Attention to cable radius

Smaller dimensions available on request

Flooring ducts for cable connection/busbar connection

HV: area for high-voltage cable entry or fully insulated bar end leads
LV: area for low-voltage cable entry

dimensions in mm

<table>
<thead>
<tr>
<th>T</th>
<th>Panel design</th>
</tr>
</thead>
<tbody>
<tr>
<td>1242</td>
<td>up to 1250 A outgoing rated current</td>
</tr>
<tr>
<td>1254</td>
<td>with heat sink at busbar</td>
</tr>
<tr>
<td>1434</td>
<td>with fan attachment</td>
</tr>
<tr>
<td>1371</td>
<td>with disconnectable voltage transformers in outgoing feeder</td>
</tr>
<tr>
<td>1587</td>
<td>with disconnectable voltage transformers on busbar</td>
</tr>
</tbody>
</table>

T (panel depth)
Space required by a WSA

Minimum clearances

Minimum opening for placing the components: 1250 x 3000 mm

Attention to cable radius

Smaller dimensions available on request

Flooring ducts

HV: area for high-voltage cable entry or fully insulated bar end leads
LV: area for low-voltage cable entry

Cable connection/bar connection

- 4 x size 3
- 5 x size 2
- 3 x size 3 with disconnectable sleeve size 2
- 4 x size 3 with disconnectable sleeve size 2
- 4 x size 2 with disconnectable sleeve size 2

Dimensions in mm
Design data
Basic dimensions and flooring ducts (contd.)

Space required by a WSB

Minimum clearances

Minimum opening for placing the components: 1250 x 3000 mm

Attention to cable radius

Smaller dimensions available on request

Flooring ducts

HV: area for high-voltage cable entry or fully insulated bar end leads
LV: area for low-voltage cable entry

<table>
<thead>
<tr>
<th>Cable connection/bar connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 x size 3</td>
</tr>
<tr>
<td>5 x size 2</td>
</tr>
<tr>
<td>3 x size 3 with disconnectable sleeve size 2</td>
</tr>
<tr>
<td>4 x size 3 with disconnectable sleeve size 2</td>
</tr>
<tr>
<td>4 x size 2 with disconnectable sleeve size 2</td>
</tr>
</tbody>
</table>

Dimensions in mm
Space required by a WSB
Transport of the Switchgear unit

When transporting the switchgear unit, it must be ensured that the transport units do not slip or tilt (if necessary, nail transport pallet down to the loading surface). Reuse the original packaging to store parts which have been unpacked for inspection.

Packaging the switchgear

- If packed for truck transport, the switchgear unit is delivered on a pallet with PE protective film.
- For sea-worthy transport, the units are packed in sealed aluminium film with desiccant and in a closed case with tightly closed wooden base.
- In case of air transport, the switchgear unit is packaged in a wooden crate with closed wooden base and with a blister IPE film as dust protection or in wooden crates, also with closed wooden base.

Transport to the site of installation

For storage, the operating conditions admissible for switchgear operation must exist.
Avoid condensation.

During transport to the site of installation, it must be taken into account that the main weight is located in the top area of the switchgear – “top-heavy”.

Transport using a forklift truck: Only transport the switchgear on a pallet.
Attention – “top-heavy”!

Transport without pallet:
The crane mounting harness must be hooked into the jack rings of the switchgear.